metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shan Gao,^a Li-Hua Huo,^a Hui Zhao^a and Seik Weng Ng^b*

^aCollege of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.006 \text{ Å}$ R factor = 0.059 wR factor = 0.152 Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(butane-2,3-dione monooxime benzoylhydrazone- $\kappa^{3}O$,N,N')nickel(II) sulfate salicylhydroxamic acid

The Ni atom in the title compound, $[Ni(C_{11}H_{13}N_3O_2)_2]$ -SO₄·C₇H₇NO₃, is *O*,*N*,*N*'-chelated by the two neutral hydrazone ligands in an octahedral environment. The cation interacts with the anion and the salicylhydroxamic acid molecule through hydrogen bonds to form a linear chain running along the *c* axis. Received 21 October 2004 Accepted 25 October 2004 Online 6 November 2004

Comment

Butane-2,3-dione monooxime benzoylhydrazone in the deprotonated form chelates in a terdentate manner to the metal atom of a nickel(II) monoacetate entity; the oximate OH group is not deprotonated and is involved in hydrogenbonding interactions in the resulting pyridine adduct (Huo *et al.*, 2004). The pyridine in the formulation arises from an excess of the reagent. In the present study, a similar reaction was attempted with a hydroxylamine-type ligand, *viz.* salicyl-hydroxamic acid, in place of pyridine, in the hope of synthesizing a nickel complex with two different ligands chelating to nickel. However, the reaction resulted in a bis(butane-2,3-dione monooxime benzoylhydrazone)nickel salt, (I), the salicylhydroxamic acid serving instead as a co-crystal component.

The Ni atom is O,N,N'-chelated by the two ligands in an octahedral geometry (Fig. 1); the cation, sulfate anion and the salicylhydroxamic acid molecule interact through hydrogen bonds (Table 2) to give a chain motif. The literature reports a case of salicylhydroxamic acid co-crystallizing with a coordination compound, the coordination compound being chlorobis(*o*-phenanthroline)copper(II) chloride (O'Brien *et al.*, 2000).

Experimental

 ${\ensuremath{\mathbb C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

A methanol solution of nickel sulfate hexahydrate (0.26 g, 1 mmol) and salicylhydroxamic acid (0.15 g, 1 mmol) was added to a methanol

solution (25 ml) of diacetyl monooxime benzoylhydrazone (0.22 g, 1 mmol). The mixture was heated for several hours. Yellow crystals were isolated from the filtered solution after several days.

 $D_x = 1.498 \text{ Mg m}^{-3}$

Cell parameters from 21088

Mo $K\alpha$ radiation

reflections

 $\theta = 3.1-27.4^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$

T = 295 (2) K

Prism, yellow $0.39 \times 0.27 \times 0.20 \text{ mm}$

Crystal data

$$\begin{split} & [\mathrm{Ni}(\mathrm{C}_{11}\mathrm{H}_{13}\mathrm{N}_{3}\mathrm{O}_{2})_{2}]\mathrm{SO}_{4}\cdot\mathrm{C}_{7}\mathrm{H}_{7}\mathrm{NO}_{3} \\ & M_{r} = 746.39 \\ & \mathrm{Monoclinic}, \ P_{2_{1}}/c \\ & a = 7.986 \ (2) \ \text{\AA} \\ & b = 23.781 \ (5) \ \text{\AA} \\ & c = 17.868 \ (4) \ \text{\AA} \\ & \beta = 102.82 \ (3)^{\circ} \\ & V = 3309 \ (1) \ \text{\AA}^{3} \\ & Z = 4 \end{split}$$

Rigaku R-AXIS RAPID
diffractometer7483 independent reflections
4963 reflections with $I > 2\sigma(I)$ ω scans $R_{int} = 0.069$ Absorption correction: multi-scan
(ABSCOR; Higashi, 1995) $\theta_{max} = 27.5^{\circ}$ $T_{min} = 0.591, T_{max} = 0.870$ $k = -30 \rightarrow 30$ 29244 measured reflections $l = -23 \rightarrow 23$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0767P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.059$	+ 1.6714P]
$wR(F^2) = 0.152$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
7483 reflections	$\Delta \rho_{\rm max} = 1.19 \text{ e } \text{\AA}^{-3}$
450 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Ni1-O2	2.108 (2)	Ni1-N4	2.078 (3)
Ni1-O4	2.080 (2)	S1-O8	1.476 (3)
Ni1-N1	2.127 (3)	S1-O9	1.473 (3)
Ni1-N2	1.972 (3)	S1-O10	1.474 (3)
Ni1-N5	1.992 (3)	S1-O11	1.462 (3)
02-Ni1-04	90.3 (1)	N1-Ni1-N4	97.0 (1)
O2-Ni1-N1	153.6 (1)	N1-Ni1-N5	106.0 (1)
O2-Ni1-N2	77.5 (1)	N2-Ni1-N4	101.9 (1)
O2-Ni1-N4	93.2 (1)	N2-Ni1-N5	177.5 (1)
O2-Ni1-N5	99.9 (1)	N4-Ni1-N5	78.1 (1)
O4-Ni1-N1	90.6 (1)	O8-S1-O9	109.1 (2)
O4-Ni1-N2	102.8 (1)	O8-S1-O10	106.6 (2)
O4-Ni1-N4	155.3 (1)	O8-S1-O11	110.5 (2)
O4-Ni1-N5	77.2 (1)	O9-S1-O10	110.5 (2)
N1-Ni1-N2	76.6 (1)	O9-S1-O11	110.4 (2)

Table 2

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
01-H20···O8	0.82	1.76	2.569 (4)	171
$O3-H3o\cdots O10^{i}$	0.82	1.86	2.626 (4)	156
$N3-H3n \cdots O11^{i}$	0.86	2.06	2.707 (4)	132
N6−H6n···O6	0.86	2.13	2.975 (4)	170
O5−H5o···O10	0.82	2.00	2.771 (4)	157
O7−H7o···O9 ⁱⁱ	0.82	1.83	2.639 (4)	168
N7-H7 n ···O7	0.86	1.98	2.634 (5)	132

Symmetry codes: (i) $x, \frac{3}{2} - y, \frac{1}{2} + z$; (ii) $x, \frac{3}{2} - y, z - \frac{1}{2}$.

ORTEPII (Johnson, 1976) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

H atoms were placed in calculated positions [C-H = 0.93 Å, N-H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)]$, whereas the hydroxy and methyl groups were rotated to to fit the electron density [C-H = 0.96 Å, O-H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(C,O)]$. They were included in the refinement in the riding-model approximation. The final difference Fourier map had a peak in a solvent-accessible void 2.8 Å from O11, but attempts to model the electron density led to a worse refinement.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054G036) and the University of Malaya for supporting this study.

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Huo, L.-H., Lu, Z.-Z., Gao, S. & Zhao, H. (2004). Acta Cryst. E60, m1450m1452.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- O'Brien, E. C., Farkas, E., Gil, M. J., Fitzgerald, E., Castineras, A. & Nolan, K. B. (2000). J. Inorg. Biochem. 79, 47–51.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.